Beschreibung

vor 11 Jahren
Die unter dem Einfluss von Organismen entstehenden Minerale können entweder lediglich ein Nebenprodukt des Metabolismus sein oder aber eine Funktion aufweisen, wofür ihre Eigenschaften und Morphologie gezielt vom Organismus gesteuert werden. Der erstere Fall der bioinduzierten Mineralisation wurde in dieser Arbeit bei der Fällung des Minerals Schwertmannit (Fe8O8(OH)6SO4) durch den Bakterienstamm Leptospirillum ferrooxidans angetroffen. Die ursprünglich als bio-spezifisch eingeschätzte Morphologie des Minerals konnte in abiotischen Experimenten unter geeigneten Bedingungen erhalten werden. Die in dieser Arbeit am Beispiel der calcitischen Brachiopodenschalen, Seeigelstacheln und Seeigelzähne untersuchten Produkte der gesteuerten Biomineralisation sind Kompositwerkstoffe, deren Eigenschaften aus der Kombination von weichen organischen und harten mineralischen Komponenten entstehen. Sie sind funktionsangepasste Strukturen, für die ein anorganischer Bildungsmechanismus nicht in Frage kommen kann.

Die Bildung der Minerale und deren Eigenschaften wurden mit Hilfe von Rasterelektronenmikroskopie, Rückstreuelektronenbeugung, Transmissionselektronenmikroskopie, Röntgenbeugung, Mikrohärtenmessungen nach Vickers und Nanoindentation untersucht. Durch Messungen mit niedriger Beschleunigungsspannung konnte die laterale Auflösung der Rückstreuelektronenbeugung verbessert werden. Eine Verbesserung der Winkelgenauigkeit der Rückstreuelektronenbeugung wurde durch einen statistischen Ansatz erreicht.

Durch vergleichende biotische und abiotische Syntheseexperimente wurde die Bildung von Schwertmannit durch Leptospirillum ferroooxidans als Prozess einer bioinduzierten Mineralisation identifiziert. Die abiotischen Synthesewege beinhalten sowohl zweiwertige als auch dreiwertige Eisenlösungen als Ausgangsmaterial und nutzen verschiedene Wege der Oxidation und/oder Präzipitation von Schwertmannit. Die so gefällten Proben zeigten unterschiedliche Morphologien des Minerals, worunter aber auch die "Igelmorphologie" zu finden war, die in der Literatur als mit Schwertmannit-Nadeln überwachsene Zellen angesehen worden war.



Rietveld-Anpassungen des Röntgenbeugungsprofils des amorphen bis nanokristallinen Minerals zeigen, dass die Kristallitgröße anisotrop ist. Sie ist je nach Bildungsbedingungen 2-2.5 nm senkrecht und als 5-11 nm parallel zu Kanälen, die durch das Netzwerk von [FeO6]3- -Oktaedern in der Struktur gebildet werden.

Die Untersuchungen des Aufbaus calcitischer Brachiopodenschalen zeigen, dass Brachiopodenschalen, je nach Spezies, aus bis zu drei distinkten Mikrostrukturen bestehen können: Kolumnare Schicht, faserige Schicht und Primärschicht. Die Mikrostruktur und Textur der kolumnaren Schicht kann durch einen kompetitiven Wachstumsprozess erklärt werden, der auch bei anorganischen Prozessen angetroffen werden kann. Eine Erklärung der Mikrostruktur der fasrigen Schicht und der Primärschicht ist hingegen nicht durch Prozesse, die aus anorganischen Systemen bekannt sind, möglich. Die Mikrostruktur der Primärschicht, die in dieser Arbeit erstmalig mit Hilfe von räumlich hochauflösender Rückstreuelektronenbeugung aufgeklärt wurde, ähnelt dendritischen Strukturen. Eine derartig stark verzahnte und hochwiderstandsfähige Mikrostruktur ist bisher bei keinem anderen einphasigen Material bekannt und wird durch einen Entstehungsprozess aus einem amorphen CaCO3 (ACC) Precursor erklärt, der seinerseits eine Agglomeration von ACC-gefüllten Vesikeln entstand. Die Vickerhärten der einzelnen Schichten in Brachiopodenschalen schwanken zwischen 200 und 520 HV (0.005/10) und sind damit deutlich härter als bei anorganisch geformtem Calcit (150-170 HV 0.005/10). Mikrostruktur, Textur und Anordnung der Schichten innerhalb von Brachiopodenschalen maximieren deren Bruchfestigkeit.

Seeigel bilden Calcit mit einem starken Grad an kristallographischer Vorzugsorientierung. Diese Vorzugsorientierung ist bei Seeigelstacheln so hoch, dass diese hochporösen Konstrukte als Einkristalle bezeichnet werden. Eine genaue, räumlich aufgelöste Messung der Orientierung der Kristallite mit Hilfe von Rückstreuelektronenbeugungsmessungen mit hoher Winkelauflösung zeigten, dass es interne Verkippungen bis zu 0.5° gibt. Diese Verkippungen in Seeigelstacheln erlauben Rückschlüsse auf deren Bildung. Die räumlich aufgelöste chemische Analyse in Kombination mit räumlich aufgelöster mechanischer Charakterisierung zeigt, dass der Mg Gehalt (molares Mg/Ca Verhältnnis 1-6 %) in Seeigelstacheln nicht mit Nanohärte (4-4,5 GPa) und E-Modulus (50-80 GPa) korrelierbar ist. Die Nanhohärte von Seeigelstacheln liegt deutlich höher als bei anorganisch gebildetem Calcit (3.0 +/- 0.2\,GPa), während deren E-Moduli ähnlich sind (70 +/- 5\,GPa).

Diese Arbeit untersucht erstmals die Mikrostruktur von Seeigelzähnen mit Rückstreuelektronenbeugung. Die Untersuchungen zeigen, dass die großen strukturellen Einheiten, Steinteil, lamellarer Nadel Komplex, Prismen, Primär-, Sekundär- und Karinarplatten, 3-5° gegeneinander verkippt sind. Diese Bereiche selbst sind wieder in Untereinheiten strukturiert, beispielsweise einzelne Platten, die 1-2° gegeneinander verkippt sind. Diese Untersuchungen zeigen jedoch auch, dass die Bereiche ineinandergreifen können und eine strikte Unterscheidung nicht immer möglich ist. Für dieses Material wird der Begriff des Kompositkristalls vorgeschlagen. Das molare Mg/Ca Verhältnis der untersuchten Seeigelzähne liegt bei 10-25 % und ist positiv mit der Nanohärte (4-8 GPa) korreliert. Die Kombination der Messung der präzisen kristallographischen Orientierung, mikrostrukturellen, chemischen und mechanischen Eigenschaften trägt zu einem tiefergehenden Verständnis des Selbstschärfungsmechanismuses der Seeigelzähne bei. So konnte beispielsweise der häufig diskutierte Einfluss der prominenten 104-Spaltfläche von Calcit ausgeschlossen werden.

Kommentare (0)

Lade Inhalte...

Abonnenten

15
15
:
: